\qquad

Power From Fusion

The Energy of Fusion

The masses of subatomic particles are given in atomic mass units, amu's or u's where

$$
1 u=1.6605402 \times 10^{-27} \mathrm{~kg} .
$$

Do the following subtraction to find how much mass is "lost" when 4 hydrogen atoms fuse to one helium: ${ }^{2}$

Find the energy produced in each fusion reaction.

1. Convert this "lost" mass from u/fusion to $\mathrm{kg} /$ fusion using $1 \mathrm{u}=1.6605 \times 10^{-27} \mathrm{~kg} \quad$ (keep 5 sig figs)

EXample: $\frac{0.028697 \mathrm{u}}{\text { fusion }}(\underbrace{\left.\frac{1.6605 \times 10^{-27} \mathrm{~kg}}{1 \mathrm{u}}\right)}=\frac{4.7653 \times 10^{-29} \mathrm{~kg}}{\text { fusion }} \quad \frac{\mathrm{kg}}{\text { fusion }}$
Use the conversion factor to multiply by one \& get rid of unwanted units (u)!
2. ${ }^{2}$ Convert from mass/fusion to energy/fusion (in Joules) using $E=m c^{2}$ and $c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$\frac{\mathrm{J}}{\text { fusion }}$
3. ${ }^{2}$ Convert the energy/fusion from Joules to kilowatt-hour using $1 \mathrm{kWhr}=3.6 \times 10^{6} \mathrm{~J}$.

$$
\frac{k W h r}{\text { fusion }}
$$

The energy released by a single fusion reaction of 4 hydrogen atoms to one helium atom is:
kWhr
fusion

How many pounds of H would we have to fuse to provide energy used in US households.
4. Convert this ($1.190 \times 10^{-18} \mathrm{kWhr} /$ fusion) to fusions/household using $10,932 \mathrm{kWhr} /$ household which the US Energy Information Administration gives as the 2014 average (www.eia.gov) (keep 4 sig figs)

It should seem like a HUGE number!! BUT ... how much hydrogen is this?
$5 .^{2}$ Each fusion reaction uses $6.694 \times 10^{-27} \mathrm{~kg}$ of H (that becomes He and energy). Find the total H that would have to be fused to supply an average households energy using your result in \#4
kg of H
household
6. ${ }^{2}$ To supply $7,256,000$ NY households, how many kg of hydrogen would need to undergo fusion?
$\frac{\mathrm{kg} \text { of } \mathrm{H}}{\text { NY State Households }}$
7. ${ }^{2}$ How many pounds of hydrogen is this if $1 \mathrm{~kg}=2.2 \mathrm{lb}$? What do you think of this number?
$\frac{\mathrm{lb} \text { of } \mathrm{H}}{\text { NY State }}$

What do you think of this number? ${ }^{2}$

The Energy of Sol ... How much H does Sol fuse each second?
Sol's luminosity is 3.827×10^{26} Watts or

$$
L_{\text {sol }}=3.827 \times 10^{26} \frac{\text { Joules }}{\text { second }}
$$

provided by the fusion of hydrogen into helium. On p. 1 (\#2), you calculated that Each fusion yields an energy of

$$
E_{\text {fusion }}=4.283 \times 10^{-12} \frac{\text { Joules }}{\text { fusion }}
$$

1. Use these to find the number of hydrogen fusions per second that provide Sol's $3.827 \times 10^{26} \mathrm{~J} / \mathrm{sec}$ (keep 4 sig figs).

$$
\frac{3.827 \times 10^{26} \mathrm{~J}}{\text { second }}(\underbrace{\left.\frac{1 \text { fusion }}{4.283 \times 10^{-12} \mathrm{~J}}\right)}_{\begin{array}{c}
\text { Flip this factor to get fusions on top, then } \\
\text { get rid of } \mathrm{J} \text { with Sol's Luminosity }
\end{array}}=\frac{8.935 \times 10^{37} \text { fusions }}{\text { second }} \quad \frac{\text { fusions }}{\text { second }}
$$

The total mass of H used in each fusion (to become He and energy) is

$$
m_{\text {fusion }}=6.694 \times 10^{-27} \frac{\mathrm{~kg} \text { of } \mathrm{H}}{\text { fusion }}
$$

2. ${ }^{2}$ Convert your result from \#1 $\left(8.935 \times 10^{37}\right.$ fusions $\left./ \mathrm{sec}\right)$ from fusions $/ \mathrm{sec}$ to $\mathrm{kg} / \mathrm{sec}$ using this.

Abstract

An aircraft carrier such as the USS Eneterprise (CVN-65) shown, weighs 94,781 metric tons (1 metric ton $=1$ tonne $=1000 \mathrm{~kg}$). How many of these ships would have to be fused each second to supply Sol's energy (IF they were pure hydrogen ... not a great shipbuilding material, but hey, this is the ivory tower, eh?)?

$\frac{\mathrm{kg} \text { of } \mathrm{H}}{\text { second }}$

1. ${ }^{2}$ Find the mass of the USS Enterprise in kg (keep 4 sig figs)
2. ${ }^{2}$ Convert the amount the sun fuses from $\mathrm{kg} / \mathrm{sec}$ to aircraft carriers/second (USS Enterprise/sec)
3. ${ }^{2}$ Compare this to the amount needed to supply New York State

The Energy of Sol ... How much H does Sol turn from matter to energy each second?
Sol's luminosity is 3.827×10^{26} Watts or

$$
L_{\text {Sol }}=3.827 \times 10^{26} \frac{\text { Joules }}{\text { second }}
$$

provided by the fusion of hydrogen into helium. On p. 1 (\#2), you calculated that Each fusion yields an energy of

$$
E_{\text {fusion }}=4.283 \times 10^{-12} \frac{\text { Joules }}{\text { fusion }}
$$

The number of hydrogen fusions per second that provide Sol's $3.827 \times 10^{26} \mathrm{~J} / \mathrm{sec}$ is

$$
N_{\text {fusions }}=8.935 \times 10^{37} \frac{\text { fusions }}{\text { second }}
$$

The mass of H transformed to energy in each fusion is

$$
m_{\text {lost in fusion }}=4.7653 \times 10^{-29} \frac{\mathrm{~kg} \text { of } \mathrm{H}}{\text { fusion }}
$$

1. ${ }^{2}$ Convert your result from \#1 (8.935×10^{37} fusions $/ \mathrm{sec}$) from fusions $/ \mathrm{sec}$ to $\mathrm{kg} / \mathrm{sec}$ using this.

$$
\frac{8.935 \times 10^{37} \text { fusions }}{\text { second }}\left(\frac{6.694 \times 10^{-27} \mathrm{~kg}}{1 \text { fusion }}\right)=\frac{5.981 \times 10^{11} \mathrm{~kg}}{\text { second }} \quad \frac{\mathrm{kg} \text { of H}}{\text { second }}
$$

An aircraft carrier such as the USS Eneterprise (CVN-65) shown, weighs 94,781 metric tons (1 metric ton $=1$ tonne $=1000 \mathrm{~kg}$). How many of these ships would have to be fused each second to supply Sol's energy (IF they were pure hydrogen ... not a great shipbuilding material, but hey, this is the ivory tower, eh?)?

The mass of the USS Enterprise in kg (keep 4 sig figs)

$$
m_{\text {USS Enterprise }}=9.478 \times 10^{7} \frac{\mathrm{~kg}}{\text { USS Enterprise }}
$$

1. ${ }^{2}$ Convert the amount the sun convertst to energy from $\mathrm{kg} / \mathrm{sec}$ to aircraft carriers/second
2. ${ }^{2}$ What do you think of this much matter being converted entirely to energy EVERY SECOND??
